$a \quad \ddot{D}_{B}=B l x$
x vucrases wn Sume as $x=x_{0}+v i$

$$
\begin{aligned}
& \Phi_{B}=B l\left(1_{0}+N_{D} t\right) \\
& \varepsilon=-\frac{d \phi_{B}}{d t}=-B l N . \\
& \varepsilon=I R \\
& R=I=\frac{\varepsilon}{R}=\frac{B l N}{R}
\end{aligned}
$$

$$
b \quad \varepsilon=I \cdot R
$$

B poonts out of the paper; fluse arcrelaols aud nooure abluotse this chause Neld a field to counteract; induced curient will TMn cw
c Constant velocity means no toral fotce on ract.

$$
\text { Festernial }=\text { Florentr }=\text { Il B }
$$

B is up: I is down un rod Floreukz porintis do the left The forer to beap constaus morton is equal to Floreutiz and pormis i isght
ic condimued

$$
\begin{aligned}
P_{\text {esAl }} & =F_{\text {ladk }} V \quad \text { (pawer!) } \\
& =I l B V \\
& =\frac{\varepsilon}{R} l B N=\frac{(B l V)^{2}}{R}
\end{aligned}
$$

1d. Elecpric powes

$$
\begin{aligned}
& P_{\text {dec }}=I^{2} R=\left(\frac{B l N}{R}\right)^{2} R=\frac{(B l N)^{2}}{R} \\
& \text { note } P_{\text {elec }}=P_{\text {eset }} \\
& 2 \text { a } \frac{\partial E}{\partial t}=\frac{\partial}{\partial t}(V / d)=\frac{1}{J} \frac{\partial V}{\partial t}=\frac{1}{10^{-3}} 100 \mathrm{~V} /(\mathrm{ms}) \\
& =10^{5} \mathrm{~V} /(\mathrm{mS}) \\
& b \vec{f}_{D}=\varepsilon_{0} \frac{\partial \vec{E}}{\partial t} \\
& =8.8510^{-12} 10^{5} \mathrm{~A} / \mathrm{m}^{2}=8.8510^{-7} \mathrm{~A} / \mathrm{mn}^{2} \\
& I_{p}=\int \vec{y} \cdot d \vec{a} \quad \vec{y} \| \vec{a} \\
& I_{D}=y \pi r_{D}^{2}=y \pi(d / 2)^{2}=2 \cdot 5 \cdot 10^{-9} \mathrm{~A} \text {. }
\end{aligned}
$$

$2 C$

$$
\rho \vec{B} \cdot \vec{d}=\mu_{0} I_{D \text { mud }}
$$

Ampercan loop $=$ circe with radius r and surfall πr^{2}

$$
\begin{aligned}
& I_{D \text { end }}=y_{D} \pi r^{2} \\
& 2 \pi r B=\mu_{0} y_{D} \pi r^{2}
\end{aligned}
$$

$$
\begin{aligned}
B & =\frac{\mu_{0} f_{D} r}{2}=\frac{\mu_{0} \varepsilon_{0}}{2} r\left|\frac{\partial \vec{E}}{\partial t}\right| \\
& =\frac{r}{2 e^{2}}\left|\frac{\partial E}{\partial t}\right|=5.6 .10^{-15} \mathrm{~T} .
\end{aligned}
$$

$3 a \cdot \quad \overrightarrow{0} \cdot \vec{E}=\frac{\rho_{l}}{\varepsilon_{0}} \quad \vec{\nabla} k \vec{E}=-\mu_{0} \mu m-\frac{\partial \vec{B}}{\partial t}$

$$
\vec{\sigma} \cdot \vec{B}=\mu_{0} \rho_{m} \quad \vec{\sigma} \times \vec{B}=\mu_{0} Y_{l}+\mu_{\theta} \overrightarrow{\vec{b}} \frac{\partial \vec{E}}{\partial \tau}
$$

with $\overrightarrow{0} \cdot Y_{m}+\frac{\partial \beta_{m}}{\partial t}=0$

$$
\overrightarrow{0} \cdot \vec{Y}_{e}+\frac{\partial \mu_{e}}{\partial t}=0
$$

36

$$
\begin{aligned}
& \Phi_{m L}=\int \vec{B} \cdot d \vec{a} \\
& \varepsilon=-\frac{d}{d t} \mathscr{\Phi}_{1}=-L \frac{\partial I}{\partial t} .
\end{aligned}
$$

Assuthe vhath curvizut Os zero, we can fivird the duangle on the cattlen as:

$$
\Delta I=\Delta \mathscr{D}_{m} / L
$$

If thate is a watnelte monopole it luas a chatge 9 m.
\vec{B} is similar to \vec{E} for olectitue eliargls:

$$
\begin{gathered}
\vec{B}=\frac{\mu_{0}}{4 \pi} \frac{q_{11}}{\Gamma^{2}} \\
\Phi_{1 n}=\int \vec{B} \cdot d \vec{a}=\frac{\mu_{0}}{4 \pi} \frac{q_{11}}{r^{2}} 4 \pi r^{2}
\end{gathered}
$$

Thus fluse envitted lys am lats to pars flitough the loop, if the Monopole flies thr ough

$$
\Delta \rho_{m}=\mu_{0} g_{m} . \text { Tluss: } \Delta I=\frac{\mu_{0} g_{m}}{L}
$$

$4 . a$
Use the low of Faradaly

The sustem has cylduder symmedry thus wiole \vec{B} atong \hat{z}^{i} arets, the $\frac{3}{t}$ field Juns un cavdes.
Magnetre field for solemoud $i<R$.

$$
\vec{B}=\mu_{0} N I \vec{?}
$$

flure flivough sutface widh radius $T<R$

$$
\begin{aligned}
\mathscr{C}_{B} & =\int_{S} \vec{B} \cdot \hat{\lambda} d a \\
& =\frac{\mu 0 N I}{l} \pi r^{2}
\end{aligned}
$$

with $I=I_{0} \sin (\omega \phi)$.
(1)Tleteforer $\frac{d}{d t} D_{B}=\frac{\mu \cdot N I_{0}}{l} \pi r^{2} \omega \cos (\omega t)$

4 continued.
a) For $i<R$ the loop aroutrd the surface da is given as

$$
\oint_{c} \vec{E} \cdot d \vec{l}=2 \pi r E
$$

Therefore we fund:

$$
\begin{aligned}
\text { ar } \mid E & \left.=-\frac{\mu_{0} N_{0} \pi r^{2}}{l} \omega_{0} I_{0} \cos (\omega 0)\right) \\
\text { solve } f P t|E| & =-\frac{\mu_{0} N r \omega I_{0}}{2 l} \cos (c o d) .
\end{aligned}
$$

b)

$$
\begin{aligned}
& \text { For } x>R(B=0 \quad r>R) \\
& \oint_{c} \vec{E} \cdot \overrightarrow{d l}=-\frac{d}{d t} \int_{s} \vec{B} \cdot d \vec{l} \\
& =-\frac{d}{d t}\left[\pi R^{2} \frac{\mu_{0} N I}{l}\right] \\
& 2 \pi r|E|=-\frac{\mu_{0} N \pi R^{2}}{l} \omega I_{0} \cos (\omega t) \\
& |E|=-\frac{\mu_{0} N R^{2} \omega I_{0}}{1+l} \cos (\omega b)
\end{aligned}
$$

5a. No loreuth colteractoran

$$
\begin{aligned}
& E_{i}^{\prime \prime}=E x . \\
& b \quad B_{x}-\mu_{0} \text { I. } \\
& n^{\prime}=\gamma / n \text {. } \\
& y^{2}=\frac{1}{(1-V} \\
& I^{\prime}=\frac{I}{r} \\
& B_{x}^{\prime}=B_{x} \\
& \text { c. } \vec{E}^{\prime} \cdot B^{-1}=E_{Q}^{\prime} B_{x}^{\prime}+E y^{\prime} \cdot B_{y}^{\prime}+E_{z}^{\prime} B_{z} \\
& =E_{x} b_{x}+\pi^{2} E_{y} B_{y}{ }^{v}-x^{2}+b_{2} b_{y} \\
& +y^{2} \frac{v}{C^{2}}+z^{2}-\frac{V^{2}}{C^{2}} B_{2} E_{z}=
\end{aligned}
$$

$$
\begin{aligned}
& =E_{x} B_{x} x+\left(1-\frac{v^{2}}{c^{2}}\right) y^{2} E y B_{y}+\left(1-\frac{v^{2}}{c^{2}}\right) y^{2} E_{2} B_{2} \\
& =E_{x} B_{x}+E_{y} B_{y}+E_{2} B_{2} .
\end{aligned}
$$

d. Ware equdtion: ARPE $D^{2} E=\mu_{0} \frac{\partial^{2} E}{\partial^{2}}$
$M_{2}: \quad \overrightarrow{0} k \vec{E}=-\frac{\partial \beta}{\partial A}$

$$
\begin{aligned}
& \vec{E}=E_{0}\left(-\omega^{t} t+k B\right)^{\hat{y}} \hat{y} \\
& \vec{\beta}=\frac{E_{0}}{e}\left(-\omega^{\prime} t+h a\right)^{\lambda} \hat{z}
\end{aligned}
$$

5 d countrmuld.

$$
\begin{aligned}
& \vec{\nabla} \times \vec{E}=\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial 2} \\
0 & E_{1 y} & 0
\end{array}\right| \\
& =\frac{\partial}{\partial x} E_{H} \hat{Z}=k E_{0} \cos (k x-\omega x) \hat{z}
\end{aligned}
$$

But $\frac{\partial}{\partial t} \vec{B}=-\omega \frac{E_{0}}{c} \cos (k x-\mu t) \hat{z}$
Ware eq uadran: Ken $\cos \left(1 \hat{2}=\omega \frac{E_{0}}{C} \cos \right)^{\hat{2}}$

$$
\begin{aligned}
& k=\frac{w}{c} \quad O K \\
& M_{4} \frac{\partial}{\partial x} \vec{B}=-\mu_{0} \varepsilon_{0} \frac{\partial \vec{E}}{\partial t} \\
& k \frac{E_{0}}{c} \cos (\quad)=\mu_{0} \varepsilon_{0} \omega E_{0} \cos (1 \\
& \frac{k}{c}=\mu_{0} \cos \omega=\frac{\omega}{c^{2}} \quad k=\frac{\omega}{c} \quad O k .
\end{aligned}
$$

e y ditacctoou (\vec{E} Nector)

$$
\text { f: } \begin{aligned}
E y^{\prime} & =\gamma\left(E y-V B_{z}\right) \\
V & =c \quad \beta=1 \quad \gamma \rightarrow \infty
\end{aligned}
$$

sf condimuld.

$$
\begin{aligned}
& X=\frac{1}{\left(1-\beta^{2}\right)^{1 / 2}}=\frac{1}{(1-\beta)^{1 / 2}(1+\beta)^{1 / 2}} \\
& \begin{aligned}
E_{y}^{\prime}=\frac{1-\beta}{(1-\beta)^{1 / 2}(1+\beta) / 2} & E y
\end{aligned}=\frac{(1-\beta)^{1 / 2}}{(1+\beta)^{1 / e}} E_{y}=0 . \\
& B_{H_{5}^{\prime}}^{\prime}=\gamma\left(B_{z}-\frac{\beta E_{y}}{c} y\right)
\end{aligned}=\gamma\left(\frac{E_{1}}{c}-\frac{\beta}{c} E_{0}\right) .
$$

$$
\begin{aligned}
& B_{y}^{\prime}=0 \quad E_{2}^{\prime}=0 \\
& E_{x}^{\prime}=0 \quad B_{2}^{\prime}=0 \\
& \vec{E}=\overrightarrow{0} \text { and } \vec{B}^{\prime}=\overrightarrow{0}
\end{aligned}
$$

Third law of Newton

Force between two charges

Consider two identical point charges, which are forced to move towards each other. Is the third law of Newton valid for this case?
Electric forces: $\vec{F}_{12}^{\text {elec }}=-\vec{F}_{21}^{\text {elec }}$
Action $=-$ reaction

Third law of Newton

Force between two charges

Consider two identical point charges, which are forced to move towards each other. Is the third law of Newton valid for this case?
Magnetic forces: $\vec{F}_{12}^{\text {mag }} \neq-\vec{F}_{21}^{\text {mag }}$

$\vec{F}_{12}^{\text {mag }}$	$/ /$	\hat{z}
$\vec{F}_{21}^{\text {mag }}$	$/ /$	\hat{x}

Action \neq - reaction

Be careful in chapter 10 we will see the details!!

